cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198950 G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k / A(x)^k] * x^n/n ).

Original entry on oeis.org

1, 1, 2, 5, 10, 22, 58, 150, 392, 1097, 3139, 9069, 26903, 81299, 248305, 768521, 2407340, 7607947, 24248690, 77906841, 251995121, 820096599, 2684160567, 8830103123, 29183369411, 96865043941, 322780531149, 1079491353973, 3622338207474, 12193038599714, 41161594789286
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

Compare to g.f. G(x) = (1+x^2)/(1-x-x^3) that satisfies:
G(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2 * x^k / G(x)^k] * x^n/n ).

Examples

			 G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 22*x^5 + 58*x^6 +...
where
log(A(x)) = (1 + x/A(x))*x + (1 + 2^3*x/A(x) + x^2/A(x)^2)*x^2/2 +
(1 + 3^3*x/A(x) + 3^3*x^2/A(x)^2 + x^3/A(x)^3)*x^3/3 +
(1 + 4^3*x/A(x) + 6^3*x^2/A(x)^2 + 4^3*x^3/A(x)^3 + x^4/A(x)^4)*x^4/4 +
(1 + 5^3*x/A(x) + 10^3*x^2/A(x)^2 + 10^3*x^3/A(x)^3 + 5^3*x^4/A(x)^4 + x^5/A(x)^5)*x^5/5 +...
more explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 19*x^4/4 + 46*x^5/5 + 162*x^6/6 + 477*x^7/7 + 1371*x^8/8 +...