cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198952 G.f.: Sum_{n>=0} n! * 3^(n*(n-1)/2) * x^n / Product_{k=1..n} (1 + k*3^k*x).

Original entry on oeis.org

1, 1, 3, 45, 3267, 991845, 1155605211, 4910640919821, 73614877173054099, 3802910817051064124469, 665332303024345700007225099, 388955052253927480089824057425437, 751710022839628223241451188902204177091
Offset: 0

Views

Author

Paul D. Hanna, May 06 2012

Keywords

Comments

Compare the g.f. to the identities:
(1) 1/(1-x) = Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + k*x).
(2) 1+x = Sum_{n>=0} 3^(n*(n-1)/2) * x^n / Product_{k=1..n} (1 + 3^k*x).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 45*x^3 + 3267*x^4 + 991845*x^5 + 1155605211*x^6 +...
such that
A(x) = 1 + x/(1+3*x) + 2!*3^1*x^2/((1+1*3*x)*(1+2*9*x)) + 3!*3^3*x^3/((1+1*3*x)*(1+2*9*x)*(1+3*27*x)) + 4!*3^6*x^4/((1+1*3*x)*(1+2*9*x)*(1+3*27*x)*(1+4*81*x)) +...
		

Crossrefs

Cf. A182507.

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!*3^(m*(m-1)/2)*x^m/prod(k=1,m,1+k*3^k*x +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))