cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198958 q-expansion of modular form psi_0^6/t_{3B}^2.

Original entry on oeis.org

0, 0, 1, 6, 27, 80, 207, 432, 863, 1512, 2646, 4144, 6585, 9504, 14216, 19476, 27783, 36384, 49977, 63504, 84722, 104736, 136188, 165056, 210717, 250560, 314270, 367902, 455544, 525808, 642762, 733968, 888087, 1003608, 1201554, 1347232
Offset: 0

Views

Author

N. J. A. Sloane, Nov 01 2011

Keywords

Comments

psi_0 is given in A004016, t_{3B} in A198955.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q^2 + 6*q^3 + 27*q^4 + 80*q^5 + 207*q^6 + 432*q^7 + 863*q^8 + 1512*q^9 + ...
		

Crossrefs

Cf. A106402.

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 6), 36); A[3]; /* Michael Somos, Feb 22 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q^3]^3 / QPochhammer[ q])^6, {q, 0, n}]; (* Michael Somos, Feb 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( (eta(x^3 + A)^3 / eta(x + A))^6, n))}; /* Michael Somos, Jun 07 2012 */
    

Formula

Expansion of (c(q) / 3)^6 in powers of q where c() is a cubic AGM theta function. - Michael Somos, Jun 07 2012
Expansion of (eta(q^3)^3 / eta(q))^6 in powers of q.
G.f.: (Product_{k>0} (1 - x^(3*k))^3 / (1 - x^k))^6. - Michael Somos, Jun 07 2012
Convolution square of A106402. - Michael Somos, Dec 26 2015