A199024 a(n) = 6*11^n - 1.
5, 65, 725, 7985, 87845, 966305, 10629365, 116923025, 1286153285, 14147686145, 155624547605, 1711870023665, 18830570260325, 207136272863585, 2278499001499445, 25063489016493905, 275698379181432965, 3032682170995762625, 33359503880953388885, 366954542690487277745
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- Index entries for linear recurrences with constant coefficients, signature (12,-11).
Crossrefs
Cf. A199023.
Programs
-
Magma
[6*11^n-1 : n in [0..20]];
-
Mathematica
CoefficientList[Series[5*(1 + x)/(1 - 12*x + 11*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
Formula
a(n) = 11*a(n-1) + 10.
a(n) = 12*a(n-1) - 11*a(n-2), n > 1.
G.f.: 5*(1 + x)/(1 - 12*x + 11*x^2). - Vincenzo Librandi, Jan 04 2013
From Elmo R. Oliveira, Mar 02 2025: (Start)
E.g.f.: exp(x)*(6*exp(10*x) - 1).
a(n) = 5*A199023(n). (End)