A199080 Decimal expansion of x < 0 satisfying x^2 + 2*sin(x) = 1.
1, 7, 2, 5, 1, 7, 1, 2, 0, 5, 4, 2, 8, 9, 3, 0, 1, 2, 7, 1, 3, 4, 4, 2, 4, 0, 0, 2, 0, 6, 3, 2, 3, 1, 6, 2, 3, 5, 0, 8, 1, 1, 9, 4, 2, 4, 8, 7, 6, 9, 8, 3, 8, 6, 0, 5, 5, 8, 4, 1, 7, 0, 8, 5, 7, 9, 5, 5, 2, 6, 1, 3, 8, 2, 7, 8, 3, 6, 5, 4, 5, 7, 7, 1, 1, 2, 5, 3, 1, 6, 2, 3, 6, 0, 1, 3, 6, 1, 2
Offset: 1
Examples
negative: -1.7251712054289301271344240020632... positive: 0.42302818188516042885129332473260...
Links
Programs
-
Mathematica
a = 1; b = 2; c = 1; f[x_] := a*x^2 + b*Sin[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.8, -1.7}, WorkingPrecision -> 110] RealDigits[r] (* this sequence *) r = x /. FindRoot[f[x] == g[x], {x, .42, .43}, WorkingPrecision -> 110] RealDigits[r] (* A199081 *)
-
PARI
a=1; b=2; c=1; solve(x=-2, 0, a*x^2 + b*sin(x) - c) \\ G. C. Greubel, Feb 20 2019
-
Sage
a=1; b=2; c=1; (a*x^2 + b*sin(x)==c).find_root(-2,0,x) # G. C. Greubel, Feb 20 2019
Comments