A199122 Number of partitions of n into terms of (2,3)-Ulam sequence, cf. A001857.
1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 11, 14, 16, 20, 23, 29, 33, 39, 47, 54, 64, 75, 86, 101, 117, 135, 155, 179, 204, 236, 268, 306, 349, 397, 450, 511, 577, 653, 736, 831, 934, 1050, 1179, 1322, 1478, 1657, 1848, 2065, 2302, 2562, 2852, 3172, 3518, 3909
Offset: 0
Keywords
Examples
The first terms of A001857 are 2, 3, 5, 7, 8, 9, 13, 14, 18, 19, ... a(10) = #{8+2, 7+3, 5+5, 5+3+2, 3+3+2+2, 2+2+2+2+2} = 6; a(11) = #{9+2, 8+3, 7+2+2, 5+3+3, 5+2+2+2, 3+3+3+2, 3+2+2+2+2} = 7; a(12) = #{9+3, 8+2+2, 7+5, 7+3+2, 5+5+2, 5+3+2+2, 3+3+3+3, 3+3+2+2+2, 6x2} = 9.
Links
- Eric Weisstein's World of Mathematics, Ulam Sequence
- Wikipedia, Ulam number
- Index entries for Ulam numbers
Programs
-
Haskell
a199122 = p a001857_list where p _ 0 = 1 p us'@(u:us) m | m < u = 0 | otherwise = p us' (m - u) + p us m
-
Mathematica
nmax = 60; U = {2, 3}; Do[AppendTo[U, k = Last[U]; While[k++; Length[DeleteCases[Intersection[U, k - U], k/2, 1, 1]] != 2]; k], {nmax}]; a[n_] := IntegerPartitions[n, All, Select[U, # <= n &]] // Length; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 12 2021 *)