cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199122 Number of partitions of n into terms of (2,3)-Ulam sequence, cf. A001857.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 11, 14, 16, 20, 23, 29, 33, 39, 47, 54, 64, 75, 86, 101, 117, 135, 155, 179, 204, 236, 268, 306, 349, 397, 450, 511, 577, 653, 736, 831, 934, 1050, 1179, 1322, 1478, 1657, 1848, 2065, 2302, 2562, 2852, 3172, 3518, 3909
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A001857 are 2, 3, 5, 7, 8, 9, 13, 14, 18, 19, ...
a(10) = #{8+2, 7+3, 5+5, 5+3+2, 3+3+2+2, 2+2+2+2+2} = 6;
a(11) = #{9+2, 8+3, 7+2+2, 5+3+3, 5+2+2+2, 3+3+3+2, 3+2+2+2+2} = 7;
a(12) = #{9+3, 8+2+2, 7+5, 7+3+2, 5+5+2, 5+3+2+2, 3+3+3+3, 3+3+2+2+2, 6x2} = 9.
		

Crossrefs

Programs

  • Haskell
    a199122 = p a001857_list where
       p _ 0 = 1
       p us'@(u:us) m | m < u     = 0
                      | otherwise = p us' (m - u) + p us m
  • Mathematica
    nmax = 60;
    U = {2, 3};
    Do[AppendTo[U, k = Last[U]; While[k++; Length[DeleteCases[Intersection[U, k - U], k/2, 1, 1]] != 2]; k], {nmax}];
    a[n_] := IntegerPartitions[n, All, Select[U, # <= n &]] // Length;
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 12 2021 *)