A199204 Irregular triangle read by rows: the n-th row being a probability distribution based on n!.
1, 1, 1, 2, 2, 1, 1, 2, 3, 6, 6, 3, 2, 1, 1, 2, 3, 4, 6, 8, 12, 24, 24, 12, 8, 6, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120, 120, 60, 40, 30, 24, 20, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1
Offset: 2
Examples
The first five rows are: n=2: 1 1 n=3: 1 2 2 1 n=4: 1 2 3 6 6 3 2 1 n=5: 1 2 3 4 6 8 12 24 24 12 8 6 4 3 2 1
Crossrefs
Cf. A079210.
Programs
-
Mathematica
Multiply[s_]:=Product[Part[s,i], {i,Length[s]}]; nmax=6; a={}; For[n=2, n<=nmax, n++, b=DeleteDuplicates[Sort[Table[Multiply[Part[Subsets[Drop[Range[n-1], 1]], i]], {i, 2^Length[Range[n-2]]}]]]; AppendTo[a, Join[b, Reverse[b]]]]; a (* or *) nmax=6; a={};For[n=2,n<=nmax,n++, b=Divisors[(n-1)!]; AppendTo[a,Join[b,Reverse[b]]]]; a (* Stefano Spezia, Aug 17 2022 *)
Formula
A closed form for the sequence is: S_n =(1/n!) Sum {(n-1)!/{(n-1)^i(n-2)^j...2^q 1^r} (ij...qr = 00...00 to 11...11) where ij...qr is a base-2 number whose n-1 digits appear as exponents in the sum.
Comments