cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A204076 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

8, 38, 38, 188, 329, 188, 938, 2882, 2882, 938, 4688, 25277, 45056, 25277, 4688, 23438, 221726, 706454, 706454, 221726, 23438, 117188, 1944977, 11081828, 19934369, 11081828, 1944977, 117188, 585938, 17061338, 173848010, 563880962, 563880962
Offset: 1

Views

Author

R. H. Hardin Jan 10 2012

Keywords

Comments

Table starts
......8........38.........188............938.............4688
.....38.......329........2882..........25277...........221726
....188......2882.......45056.........706454.........11081828
....938.....25277......706454.......19934369........563880962
...4688....221726....11081828......563880962......28864215128
..23438...1944977...173848010....15960507749....1480470688070
.117188..17061338..2727300008...451830740558...75985220860460
.585938.149662085.42785526110.12791537916233.3900809853901802

Examples

			Some solutions for n=4 k=3
..0..0..0..0....0..0..0..0....0..0..1..2....0..0..0..1....0..0..1..2
..0..0..0..0....1..0..0..0....2..0..0..1....2..0..1..0....2..0..0..1
..1..0..0..2....2..1..0..0....1..2..0..0....0..2..0..1....0..1..0..0
..2..1..0..0....2..2..1..0....2..2..2..0....2..0..0..0....0..0..0..0
..1..2..1..0....2..0..2..1....0..2..2..2....2..2..0..1....2..0..0..0
		

Crossrefs

Column 1 is A199213

Formula

Empirical for column k:
k=1: a(n) = (3*5^n+1)/2
k=2: a(n) = 10*a(n-1) -11*a(n-2) +2*a(n-3)
k=3: a(n) = 20*a(n-1) -73*a(n-2) +86*a(n-3) -32*a(n-4)
k=4: a(n) = 32*a(n-1) -55*a(n-2) -1588*a(n-3) +5428*a(n-4) -2664*a(n-5) -3936*a(n-6) +3040*a(n-7) -256*a(n-8)
k=5: (order 13 recurrence)
k=6: (order 29 recurrence)
k=7: (order 55 recurrence)
Showing 1-1 of 1 results.