A199220 Triangle read by rows: T(n,k) = (n-1-k)*abs(s(n,n+1-k)), where s(n,k) are the signed Stirling numbers of the first kind and 1 <= k <= n.
-1, 0, -1, 1, 0, -2, 2, 6, 0, -6, 3, 20, 35, 0, -24, 4, 45, 170, 225, 0, -120, 5, 84, 525, 1470, 1624, 0, -720, 6, 140, 1288, 5880, 13538, 13132, 0, -5040, 7, 216, 2730, 18144, 67347, 134568, 118124, 0, -40320, 8, 315, 5220, 47250, 253092, 807975, 1447360, 1172700, 0, -362880, 9, 440, 9240, 108900, 788865, 3608220, 10250790, 16819000, 12753576, 0, -3628800
Offset: 1
Examples
Triangle starts: -1; 0, -1; 1, 0, -2; 2, 6, 0, -6; 3, 20, 35, 0, -24; 4, 45, 170, 225, 0, -120;
Programs
-
Mathematica
Flatten[Table[(n-1-k)Abs[StirlingS1[n,n+1-k]],{n,1,20},{k,1,n}]]
-
PARI
T(n,k) = (n-1-k)*abs(stirling(n,n+1-k,1)); \\ Michel Marcus, Sep 30 2018
Formula
The triangle of coefficients can be generated by expanding the equation (Sum_{k=1..n} 1/(1+(k-1)*d)) - 2 = 0 into a polynomial of degree n-1 in d.
Comments