cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199247 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^2*A(x)^3 + x^3*A(x)^4).

Original entry on oeis.org

1, 1, 2, 7, 25, 92, 359, 1453, 6018, 25411, 109032, 473942, 2082550, 9235675, 41284297, 185819487, 841433773, 3830604764, 17521832924, 80490034307, 371169646860, 1717567062240, 7973153760616, 37119622029816, 173272771061677, 810810134833720, 3802675087749650
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 25*x^4 + 92*x^5 + 359*x^6 + 1453*x^7 +...
Related expansions:
A(x)^3 = 1 + 3*x + 9*x^2 + 34*x^3 + 135*x^4 + 543*x^5 + 2243*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 233*x^4 + 976*x^5 + 4154*x^6 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 370*x^4 + 1611*x^5 + 7065*x^6 +...
where A(x) = 1 + x*A(x) + x^2*A(x)^3 + 2*x^3*A(x)^4 + x^4*A(x)^5.
		

Crossrefs

Cf. A198888.

Programs

  • Mathematica
    Table[Sum[Binomial[n+k, k]*Binomial[n+2*k+1, n-2*k]/(n+1), {k,0,Floor[n/2]}], {n,0,30}] (* Vaclav Kotesovec, Nov 18 2017 *)
  • PARI
    {a(n)=sum(k=0, n\2, binomial(n+k, k)*binomial(n+2*k+1, n-2*k))/(n+1)}
    
  • PARI
    {a(n)=local(A=1+x); A=1/x*serreverse(x/(1+x+x*O(x^n)) - x^3 - x^4); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^2*A^3 + x^3*A^4)+x*O(x^n)); polcoeff(A, n)}

Formula

a(n) = Sum_{k=0..[n/2]} C(n+k, k)*C(n+2*k+1, n-2*k)/(n+1).
G.f.: A(x) = (1/x)*Series_Reversion( x/(1+x) - x^3 - x^4 ).
Recurrence: 240*(n-2)*(n-1)*n*(n+1)*(543314047*n^6 - 9777816570*n^5 + 72419307730*n^4 - 282185906280*n^3 + 609197162263*n^2 - 689640519870*n + 319111630200)*a(n) = 16*(n-2)*(n-1)*n*(40205239478*n^7 - 743661045919*n^6 + 5720613587045*n^5 - 23561094982780*n^4 + 55538240643272*n^3 - 73680608104486*n^2 + 49378914311580*n - 12008736298800)*a(n-1) - 4*(n-2)*(n-1)*(91820073943*n^8 - 1836091148216*n^7 + 15607730833978*n^6 - 73389282297476*n^5 + 207862429740607*n^4 - 361251960415604*n^3 + 373910114125992*n^2 - 209189908378584*n + 47967495287040)*a(n-2) + 4*(n-2)*(516148344650*n^9 - 11611593292425*n^8 + 113759368018383*n^7 - 635856019816596*n^6 + 2229739867262616*n^5 - 5073403355773305*n^4 + 7464399000631567*n^3 - 6815882210854914*n^2 + 3481564826740104*n - 750085518551040)*a(n-3) - (710111459429*n^10 - 18460497932422*n^9 + 212532989720754*n^8 - 1424989554134304*n^7 + 6151577737700817*n^6 - 17829379077999138*n^5 + 35045804727952456*n^4 - 45976065299760536*n^3 + 38349466932479664*n^2 - 18244541292137280*n + 3720781171814400)*a(n-4) + 8*(n-4)*(2*n - 7)*(4*n - 17)*(4*n - 15)*(543314047*n^6 - 6517932288*n^5 + 31679935585*n^4 - 79420560120*n^3 + 107526834808*n^2 - 73755881832*n + 19667171520)*a(n-5). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ sqrt((1 + 2*r*s^2 + 6*r^2*s^3 + 4*r^3*s^4) / (3 + 12*r*s + 10*r^2*s^2)) / (2*sqrt(Pi) * n^(3/2) * r^(n + 1/2)), where r = 0.2013887134255166663337905234200508058745432798749... and s = 1.748883682651423548151134706780057317341305059059... are roots of the system of equations (1 + r*s)*(1 + r^2*s^3 + r^3*s^4) = s, r*(1 + 3*r*s^2 + 8*r^2*s^3 + 5*r^3*s^4) = 1. - Vaclav Kotesovec, Nov 18 2017