A199296 Number of distinct values taken by 5th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
1, 1, 2, 4, 9, 20, 45, 92, 182, 342, 601, 982, 1499, 2169, 2970, 3994, 5297, 6834, 8635, 10714, 13121, 16104, 19674, 23868, 28453, 33637, 39630, 46730
Offset: 1
Keywords
Examples
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 5th derivative at x=1: (x^(x^(x^x))) -> 360; (x^((x^x)^x)) -> 590; ((x^(x^x))^x), ((x^x)^(x^x)) -> 650; (((x^x)^x)^x) -> 1110.
Crossrefs
Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215835. Column k=5 of A216368.
Programs
-
Maple
f:= proc(n) option remember; `if`(n=1, {[0, 0, 0, 0]}, {seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2], 8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3], 10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2] +15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4]], h=f(n-j)), g=f(j)), j=1..n-1)}) end: a:= n-> nops(map(x-> x[4], f(n))): seq(a(n), n=1..20);
-
Mathematica
f[n_] := f[n] = If[n == 1, {{0, 0, 0, 0}}, Union@Flatten[#, 3]& @ {Table[ Table[Table[{2 + g[[1]], 3*(1 + g[[1]] + h[[1]]) + g[[2]], 8 + 12*g[[1]] + 6*h[[1]]*(1 + g[[1]]) + 4*(g[[2]] + h[[2]]) + g[[3]], 10 + 50*h[[1]] + 10*h[[2]] + 5*h[[3]] + (30 + 30*h[[1]] + 10*h[[2]] + 15*g[[1]])*g[[1]] + (20 + 10*h[[1]])*g[[2]] + 5*g[[3]] + g[[4]]}, {h, f[n - j]}], {g, f[j]}], {j, 1, n - 1}]}]; a[n_] := Length@Union@(#[[4]]& /@ f[n]); Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 24}] (* Jean-François Alcover, Sep 01 2023, after Alois P. Heinz *)