A199304 Palindromic primes in the sense of A007500 with digits '0', '1' and '4' only.
11, 101, 11411, 100411, 101141, 114001, 114041, 140411, 141101, 1004141, 1010411, 1040141, 1041041, 1100441, 1114111, 1140101, 1144441, 1401401, 1410401, 1411141, 1414001, 1440011, 1444411, 1444441, 10010411, 10011101, 10041011, 10044011
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p: p in PrimesUpTo(10^8) | Set(Intseq(p)) subset [0,1,4] and IsPrime(Seqint(Reverse(Intseq(p))))]; // Bruno Berselli, Nov 07 2011
-
Maple
F:= proc(d) local A0, A4, Res, q, r; Res:= NULL; q:= (10^(d+1)-1)/9; for A0 in combinat:-powerset({$1..d-1}) do for A4 in combinat:-powerset({$1..d-1} minus A0) do r:= q - add(10^i,i=A0) + 3*add(10^i,i=A4); if isprime(r) and isprime(q - add(10^(d-i),i=A0) + 3*add(10^(d-i),i=A4)) then Res:= Res, r fi od od; Res end proc: sort([seq(F(d),d=1..7)]); # Robert Israel, May 03 2018
-
PARI
allow=Vec("014");forprime(p=1,default(primelimit),setminus( Set( Vec(Str( p ))),allow)&next;isprime(A004086(p))&print1(p",")) /* better use the more efficient code below */
-
PARI
a(n=50,list=0,L=[0,1,4],needpal=1)={ for(d=1,1e9, u=vector(d,i,10^(d-i))~; forvec(v=vector(d,i,[1+(i==1&!L[1]),#L]), isprime(t=vector(d,i,L[v[i]])*u) || next; needpal & !isprime(A004086(t)) & next; list & print1(t","); n-- || return(t)))} \\ M. F. Hasler, Nov 06 2011
Comments