A199397 Binary XOR of 3^k as k varies from 0 to n.
1, 2, 11, 16, 65, 178, 619, 2784, 4929, 24482, 47371, 133872, 659713, 1196754, 5945771, 8408000, 34643073, 94509378, 313886731, 1475558352, 2552700993, 12739900146, 24581737195, 70102639264, 350315469377, 639249412322, 3139708751627, 4623469310128, 18666316402561
Offset: 0
Examples
a(2) = 1 XOR 3 = 2; a(3) = 1 XOR 3 XOR 9 = 11; a(4) = 1 XOR 3 XOR 9 XOR 27 = 16.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Crossrefs
Cf. A199396.
Programs
-
Maple
A[0]:= 1: for n from 1 to 40 do A[n]:= Bits:-Xor(A[n-1],3^n) od: seq(A[i],i=0..40); # Robert Israel, Nov 02 2015
-
Mathematica
FoldList[BitXor, 3^Range[0, 28]] (* Vladimir Reshetnikov, Nov 02 2015 *)
-
PARI
{a(n)=if(n<0,0,bitxor(a(n-1),3^n))}
Comments