A199427 Numbers n such that 4n+1 and 8n+3 are prime.
1, 7, 10, 13, 22, 28, 43, 58, 70, 73, 127, 148, 160, 163, 190, 202, 238, 253, 262, 307, 322, 352, 370, 400, 433, 472, 475, 493, 517, 532, 535, 568, 598, 637, 673, 685, 688, 742, 832, 847, 853, 862, 898, 940, 955, 1018, 1087, 1093, 1102, 1120, 1183, 1198, 1270
Offset: 1
Keywords
Examples
For n = 1, both 11 and 5 are primes, hence 2 is a primitive root of 11.
References
- Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 4.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[1270], PrimeQ[4*# + 1] && PrimeQ[8*# + 3] &] (* T. D. Noe, Nov 07 2011 *)
Comments