A199512 Triangle T(n,k) = Fibonacci(n+k+1), related to A000045 (Fibonacci numbers).
1, 1, 2, 2, 3, 5, 3, 5, 8, 13, 5, 8, 13, 21, 34, 8, 13, 21, 34, 55, 89, 13, 21, 34, 55, 89, 144, 233, 21, 34, 55, 89, 144, 233, 377, 610, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181
Offset: 0
Examples
Triangle begins : 1 1, 2 2, 3, 5 3, 5, 8, 13 5, 8, 13, 21, 34 8, 13, 21, 34, 55, 89
Links
- Michel Marcus, Rows n=0..50 of triangle, flattened
- László Németh, On the Binomial Interpolated Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.7.8. See p. 15.
Programs
-
PARI
T(n, k) = fibonacci(n+k+1); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 01 2017
Formula
T(n,k) = T(n,k-1) + T(n-1,k-1) = T(n-1,k-1) + T(n-1,k).
T(n,0) = Fibonacci(n+1) = A000045(n+1).
Extensions
More terms from Michel Marcus, Aug 01 2017