A199535 Clark Kimberling's even first column Stolarsky array read by antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 9, 10, 8, 18, 15, 17, 12, 13, 29, 24, 27, 19, 14, 21, 47, 39, 44, 31, 23, 16, 34, 76, 63, 71, 50, 37, 25, 20, 55, 123, 102, 115, 81, 60, 41, 33, 22, 89, 199, 165, 186, 131, 97, 66, 53, 35, 26, 144, 322, 267, 301, 212, 157, 107, 86, 57, 43, 28
Offset: 1
Examples
The even first column stolarsky array (EFC array), northwest corner: 1......2.....3.....5.....8....13....21....34....55....89...144 ... A000045; 4......7....11....18....29....47....76...123...199...322...521 ... A000032; 6......9....15....24....39....63...102...165...267...432...699 ... A022086; 10....17....27....44....71...115...186...301...487...788..1275 ... A022120; 12....19....31....50....81...131...212...343...555...898..1453 ... A013655; 14....23....37....60....97...157...254...411...665..1076..1741 ... A000285; 16....25....41....66...107...173...280...453...733..1186..1919 ... A022113; 20....33....53....86...139...225...364...589...953..1542..2495 ... A022096; 22....35....57....92...149...241...390...631..1021..1652..2673 ... A022130; Antidiagonal rows (T(n, k)): 1; 2, 4; 3, 7, 6; 5, 11, 9, 10; 8, 18, 15, 17, 12; 13, 29, 24, 27, 19, 14; 21, 47, 39, 44, 31, 23, 16; 34, 76, 63, 71, 50, 37, 25, 20; 55, 123, 102, 115, 81, 60, 41, 33, 22;
Links
- Clark Kimberling, The first column of an interspersion, Fibonacci Quarterly 32 (1994), pp. 301-314.
Crossrefs
Formula
From G. C. Greubel, Jun 23 2022: (Start)
T(n, 1) = A000045(n+1).
T(n, 2) = A000032(n+1), n >= 2.
T(n, 4) = A022120(n-2), n >= 4.
T(n, 5) = A013655(n-1), n >= 5.
T(n, 6) = A000285(n-2), n >= 6.
T(n, 7) = A022113(n-4), n >= 7.
T(n, 8) = A022096(n-4), n >= 8.
T(n, 9) = A022130(n-6), n >= 9.
T(n, 10) = A022098(n-5), n >= 10.
T(n, 11) = A022095(n-7), n >= 11.
T(n, 12) = A022121(n-8), n >= 12.
T(n, 13) = A022388(n-10), n >= 13.
T(n, 14) = A022122(n-10), n >= 14.
T(n, 15) = A022097(n-10), n >= 15.
T(n, 16) = A022088(n-10), n >= 16.
T(n, 17) = A022390(n-14), n >= 17.
T(n, n) = A199536(n).
T(n, n-1) = A199537(n-1), n >= 2. (End)
Extensions
More terms added by G. C. Greubel, Jun 23 2022
Comments