A199536 The first column in Clark Kimberling's even first column Stolarsky array (beginning column count at 1).
1, 4, 6, 10, 12, 14, 16, 20, 22, 26, 28, 30, 32, 36, 38, 40, 42, 46, 48, 52, 54, 56, 58, 62, 64, 68, 70, 72, 74, 78, 80, 82, 84, 88, 90, 94, 96, 98, 100, 104, 106, 108, 110, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 146, 148, 150, 152, 156
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- C. Kimberling, The first column of an interspersion, Fibonacci Quarterly 32 (1994), pp. 301-314.
Programs
-
Mathematica
a[n_]:= If[Mod[n,2]==0, 2*Floor[(n/2)*GoldenRatio] +n, 2*Floor[(n-1)/2*GoldenRatio] +n+1] -Boole[n==1]; Table[a[n], {n,80}] (* G. C. Greubel, Jun 22 2022 *)
-
SageMath
def A199536(n): if (n==1): return 1 elif (n%2==0): return 2*floor(n*golden_ratio/2) + n else: return 2*floor((n-1)*golden_ratio/2) +n+1 [A199536(n) for n in (1..80)] # G. C. Greubel, Jun 22 2022
Formula
Define Phi = (1+sqrt(5))/2, then a(1) = 1, a(2*n) = 2*floor(n*Phi) + 2*n, a(2*n+1) = 2*floor(n*Phi) + 2*n + 2.
a(n) = A199535(n, n). - G. C. Greubel, Jun 22 2022