A199547 Primes p for which pi_{4,3}(p) < pi_{4,1}(p), where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
26861, 616841, 616849, 616877, 616897, 616909, 616933, 616943, 616951, 616961, 616991, 616997, 616999, 617011, 617269, 617273, 617293, 617311, 617327, 617333, 617339, 617341, 617359, 617369, 617401, 617429, 617453, 617521, 617537, 617689, 617693, 617699, 617717
Offset: 1
Keywords
References
- Wacław Sierpiński, O stu prostych, ale trudnych zagadnieniach arytmetyki. Warsaw: PZWS, 1959, p. 22.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 26861
Programs
-
Mathematica
lst = {}; For[n = 2; t = 0, n < 50451, n++, t += Mod[p = Prime[n], 4] - 2; If[t < 0, AppendTo[lst, p]]]; lst
-
Python
from sympy import nextprime; a, p = 0, 2 while p < 617717: p=nextprime(p); a += p%4-2 if a < 0: print(p, end = ', ') # Ya-Ping Lu, Jan 18 2025
Formula
a(n) = prime(A096628(n)). - Jianing Song, Feb 20 2019
Comments