cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199578 Row sums of coefficient triangle of the monic associated Laguerre polynomials of order 1.

Original entry on oeis.org

1, -2, 4, -6, -16, 310, -3144, 28826, -260000, 2345094, -20901880, 176084986, -1216168944, 1862029910, 186232275544, -6005924996070, 144514137334976, -3177768345524954, 67577079942366120, -1420754665075404166, 29799354626069718640
Offset: 0

Views

Author

Wolfdieter Lang, Nov 25 2011

Keywords

Crossrefs

Cf. A199577 (monic first associated Laguerre), A002793(n+1)*(-1)^n, n>=0 (alternating row sums).

Programs

  • Magma
    I:=[-2,4]; [1] cat [n le 2 select I[n] else -2*n*Self(n-1) - n^2*Self(n-2): n in [1..30]]; // G. C. Greubel, May 14 2018
    
  • Mathematica
    RecurrenceTable[{a[n] == -2*n*a[n-1] -n^2*a[n-2], a[0] == 1, a[1] == -2}, a, {n, 0, 40}] (* G. C. Greubel, May 14 2018 *)
  • PARI
    m=30; v=concat([-2,4], vector(m-2)); for(n=3, m, v[n]=-2*n*v[n-1]-n^2*v[n-2]); concat([1], v) \\ G. C. Greubel, May 14 2018

Formula

a(n) = Sum_{k=0..n} A199577(n,k), n>=0.
From Wolfdieter Lang, Dec 12 2011 (Start)
E.g.f. from A199577 with x=1, z->x:
g(x) = -x*exp(-1/(1+x))*(Ei(1,-1/(1+x))-Ei(1,-1))/(1+x)^3 + 1/(1+x)^2, with the exponential integral Ei. In order to obtain the series use first Ei(1,-y/(1+x))-Ei(1,-y), and put y=1 after the expansion.
This e.g.f. satisfies the homogeneous ordinary second order differential equation (1+x)^2*(d^2/dx^2)g(x)+(4+5*x)*(d/dx)g(x)+4*g(x) = 0, with g(0)=1 and (d/dx)g(x)|_{x=0}=-2.
This e.g.f. is equivalent to the recurrence relation:
a(n) = -2*n*a(n-1) - n^2*a(n-2), a(-1)=0, a(0)=1.
(End)
The conjecture on the alternating row sums has been proved by Wolfdieter Lang, Dec 12 2011