cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199591 Generalized Fermat numbers: 5^(2^n) + 1, n >= 0.

Original entry on oeis.org

6, 26, 626, 390626, 152587890626, 23283064365386962890626, 542101086242752217003726400434970855712890626
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 08 2011

Keywords

Examples

			a(0) = 5^(2^0) + 1 = 5^1 + 1 = 6 = 4*(2^0) + 2;
a(1) = 5^(2^1) + 1 = 5^2 + 1 = 26 = 4*(2^1*3) + 2;
a(2) = 5^(2^2) + 1 = 5^4 + 1 = 626 = 4*(2^2*3*13) + 2;
a(3) = 5^(2^3) + 1 = 5^8 + 1 = 390626 = 4*(2^3*3*13*313) + 2;
a(4) = 5^(2^4) + 1 = 5^16 + 1 = 152587890626 = 4*(2^4*3*13*313*195313) + 2;
a(5) = 5^(2^5) + 1 = 5^32 + 1 = 23283064365386962890626 = 4*(2^5*3*13*313*195313*76293945313) + 2;
		

Crossrefs

Programs

  • Magma
    [5^2^n+1 : n in [0..6]];
    
  • Mathematica
    Table[5^2^n + 1, {n, 0, 6}]
  • PARI
    for(n=0, 6, print1(5^2^n+1, ", "))

Formula

a(0) = 6; a(n) = (a(n-1)-1)^2 + 1, n >= 1.
a(0) = 6, a(1) = 26; a(n) = a(n-1) + 4*5^(2^(n-1))*Product_{i=0..n-2} a(i), n >= 2.
a(0) = 6, a(1) = 26; a(n) = a(n-1)^2 - 2*(a(n-2)-1)^2, n >= 2.
a(0) = 6; a(n) = 4*(Product_{i=0..n-1} a(i)) + 2, n >= 1.
a(n) = A152578(n) - 1.
Sum_{n>=0} 2^n/a(n) = 1/4. - Amiram Eldar, Oct 03 2022