A199637 Least odd number k such that in the Collatz sequence of k there are n even numbers.
5, 3, 21, 13, 85, 17, 11, 7, 15, 9, 19, 37, 25, 49, 33, 65, 43, 87, 57, 39, 79, 153, 105, 203, 135, 271, 185, 123, 247, 169, 329, 219, 159, 295, 569, 379, 283, 505, 377, 251, 167, 111, 223, 445, 297, 593, 395, 263, 175, 351, 233, 155, 103, 207, 137, 91, 183
Offset: 4
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 4..573 (first 500 terms from T. D. Noe)
Crossrefs
Cf. A199636.
Programs
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 100; t = Table[0, {nn}]; cnt = 3; n = 1; While[cnt < nn, n = n + 2; len = Length[Select[Collatz[n], EvenQ]]; If[len <= nn && t[[len]] == 0, t[[len]] = n; cnt++]]; t f = Compile[{{n, Real}}, Block[{c = 0, k = n}, While[k > 1, c++; If[OddQ@ Round@ k, k = (3k + 1)/2, k /= 2]]; c]]; k = 1; t[] := 0; While[k < 2101, If[t@ f@ k == 0, t@ f@ k = k;]; k += 2]; t@# & /@ Range@ 100 (* Robert G. Wilson v, Mar 06 2018 *)
Extensions
New name from Robert G. Wilson v, Mar 06 2018
Comments