A199909 T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum, and adjacent elements not equal modulo three (with -1 modulo 3 = 2).
1, 1, 2, 1, 4, 6, 1, 4, 12, 8, 1, 6, 24, 24, 14, 1, 8, 42, 72, 82, 32, 1, 8, 60, 152, 256, 232, 56, 1, 10, 84, 256, 804, 1312, 654, 100, 1, 12, 114, 448, 1836, 5016, 5206, 2044, 204, 1, 12, 144, 680, 3196, 12872, 24864, 21208, 6096, 388, 1, 14, 180, 952, 6064, 29864, 77874
Offset: 1
Examples
Some solutions for n=7 k=6 .-6...-3....4...-6...-3....4....4...-6....4....3....0....3...-6...-6....0....4 .-4....2....2...-4...-4....3...-1...-1....5....2....4....4....4....5...-1...-6 ..4...-5....0...-3...-3....1....0....3...-5....4....0...-3...-6...-3...-5....4 .-4....6...-1....5....2...-6...-2....1...-4....0...-2...-1....1....1....0...-1 ..6....5....0....4....3....5...-6...-1...-6...-4...-4...-5...-1...-4...-2....0 .-2...-6....1....6....5...-3....2....6....2...-3....6....5....6....1....6...-4 ..6....1...-6...-2....0...-4....3...-2....4...-2...-4...-3....2....6....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..871
Formula
Empirical for rows:
T(1,k)=1
T(2,k)=a(k-1)+a(k-3)-a(k-4)
T(3,k)=2*a(k-1)-a(k-2)+a(k-3)-2*a(k-4)+a(k-5)
T(4,k)=a(k-1)+3*a(k-3)-3*a(k-4)-3*a(k-6)+3*a(k-7)+a(k-9)-a(k-10)
T(5,k)=a(k-1)+4*a(k-3)-4*a(k-4)-6*a(k-6)+6*a(k-7)+4*a(k-9)-4*a(k-10)-a(k-12)+a(k-13)
T(6,k)=2*a(k-1)-a(k-2)+4*a(k-3)-8*a(k-4)+4*a(k-5)-6*a(k-6)+12*a(k-7)-6*a(k-8)+4*a(k-9)-8*a(k-10)+4*a(k-11)-a(k-12)+2*a(k-13)-a(k-14)
T(7,k)=a(k-1)+6*a(k-3)-6*a(k-4)-15*a(k-6)+15*a(k-7)+20*a(k-9)-20*a(k-10)-15*a(k-12)+15*a(k-13)+6*a(k-15)-6*a(k-16)-a(k-18)+a(k-19)
Comments