cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A199928 Trisection 1 of A199802.

Original entry on oeis.org

2, -1, -8, 15, 22, -104, 17, 510, -721, -1708, 5806, 1503, -31520, 31519, 121778, -312396, -233455, 1885694, -1152593, -8196936, 16079050, 21867343, -109306936, 24246207, 528076766, -780482080, -1726348607, 6132589566, 1190594623, -32799408980, 34705374038, 124349675919, -331866549712
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2011

Keywords

Comments

Also trisection 2 of A199803.

Programs

  • Mathematica
    LinearRecurrence[{-1,-5,1,-1},{2,-1,-8,15},40] (* Harvey P. Dale, Aug 01 2021 *)
  • PARI
    Vec((2 + x + x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ Colin Barker, Dec 27 2017

Formula

G.f.: ( 2+x+x^2 ) / ( 1+x+5*x^2-x^3+x^4 ). - R. J. Mathar, Jun 18 2014
a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3. - Colin Barker, Dec 27 2017

A199929 Trisection 2 of A199802.

Original entry on oeis.org

2, -4, -5, 27, -8, -128, 200, 405, -1525, -172, 8002, -9072, -29585, 83119, 47732, -483840, 357884, 2025929, -4346921, -4941000, 28343650, -10011500, -132300829, 215642979, 407506016, -1608010240, -81576032, 8313490269, -9921126365, -30119890772, 88120588898, 44244248328, -505045957225
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2011

Keywords

Crossrefs

Cf. A199802.

Programs

  • Mathematica
    LinearRecurrence[{-1,-5,1,-1},{2,-4,-5,27},40] (* Harvey P. Dale, May 26 2018 *)
  • PARI
    Vec((2 - 2*x + x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ Colin Barker, Dec 27 2017

Formula

From Colin Barker, Dec 27 2017: (Start)
G.f.: (2 - 2*x + x^2) / (1 + x + 5*x^2 - x^3 + x^4).
a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3.
(End)

A199927 Trisection 0 of A199802.

Original entry on oeis.org

1, 1, -7, 3, 32, -55, -95, 399, -11, -2024, 2573, 7137, -22015, -9073, 123712, -107499, -498119, 1168399, 1090985, -7323600, 3535193, 33005393, -59095943, -95072229, 420022144, -36762335, -2099324671, 2798230719, 7241608157, -23295324088, -8015161307, 128935159185, -119396284895, -509999348249
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2011

Keywords

Comments

Also trisection 2 of A199744, negated.

Crossrefs

Formula

G.f.: ( 1+2*x-x^2 ) / ( 1+x+5*x^2-x^3+x^4 ). - R. J. Mathar, Jun 18 2014
Showing 1-3 of 3 results.