cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199812 Number of distinct values taken by w^w^...^w (with n w's and parentheses inserted in all possible ways) where w is the first transfinite ordinal omega.

Original entry on oeis.org

1, 1, 2, 5, 13, 32, 79, 193, 478, 1196, 3037, 7802, 20287, 53259, 141069, 376449, 1011295, 2732453, 7421128, 20247355
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 10 2011

Keywords

Comments

Any transfinite ordinal can be used instead of omega, yielding the same sequence.
It appears that 2nd differences of this sequence give A174145 (starting from offset 2).
Conjectured extension of this sequence is given by A255170.

Examples

			For n=5 there are 14 possible parenthesizations, but only 13 of them produce distinct ordinals: (((w^w)^w)^w)^w < ((w^w)^w)^(w^w) < ((w^w)^(w^w))^w < ((w^(w^w))^w)^w < (w^(w^w))^(w^w) < (w^w)^((w^w)^w) < (w^((w^w)^w))^w < w^(((w^w)^w)^w) < (w^w)^(w^(w^w)) = w^((w^w)^(w^w)) < (w^(w^(w^w)))^w < w^((w^(w^w))^w) < w^(w^((w^w)^w)) < w^(w^(w^(w^w))). So, a(5)=13.
		

Crossrefs

Cf. A000108 (upper bound), A174145 (2nd differences?), A255170 (conjectured extension), A005348, A002845, A198683, A000081 (similar asymptotics), A051491.

Programs

  • Mathematica
    (* Slow exhaustive search *)
    _ \[Precedes] {} = False;
    {} \[Precedes] {} = True;
    {a_ \[Diamond] , __} \[Precedes] {b_ \[Diamond] , __} := a \[Precedes] b /; a =!= b;
    {a_ \[Diamond] m_, _} \[Precedes] {a_ \[Diamond] n_, _} := m < n /; m != n;
    {z_, x___} \[Precedes] {z_, y___} := {x} \[Precedes] {y};
    m_ \[CirclePlus] {} := m;
    {} \[CirclePlus] n_ := n;
    {x___, a_ \[Diamond] m_} \[CirclePlus] {a_ \[Diamond] n_, y___} := {x, a \[Diamond] (m + n), y};
    {x___, a_ \[Diamond] m_} \[CirclePlus] z : {b_ \[Diamond] n_, y___} := If[a \[Precedes] b, {x} \[CirclePlus] z, {x, a \[Diamond] m, b \[Diamond] n, y}];
    {} \[CircleTimes] _ = {};
    _ \[CircleTimes] {} = {};
    {a_ \[Diamond] m_, x___} \[CircleTimes] {b_ \[Diamond] n_} := If[b === {}, {a \[Diamond] (m n), x}, {(a \[CirclePlus] b) \[Diamond] n}];
    x_ \[CircleTimes] {y_, z__} := x \[CircleTimes] {y} \[CirclePlus] x \[CircleTimes] {z};
    f[1] = {{{} \[Diamond] 1}};
    f[n_] := f[n] = Union[Flatten[Table[Outer[#1 \[CircleTimes] {#2 \[Diamond] 1} &, f[k], f[n - k], 1], {k, n - 1}], 2]];
    Table[Length[f[n]], {n, 1, 17}]

Formula

Conjecture: a(n) ~ c * d^n * n^(-3/2), where c = 0.664861... and d = A051491 = 2.955765... - Vladimir Reshetnikov, Aug 11 2016

Extensions

a(18)-a(20) from Robert G. Wilson v, Sep 15 2012