A199837 Number of -n..n arrays x(0..7) of 8 elements with zero sum and no two neighbors summing to zero.
34, 6126, 113884, 888420, 4340094, 15805218, 47040968, 120843752, 277500282, 583380598, 1141982292, 2107735180, 3702875670, 6237700074, 10134506112, 15955531856, 24435201362, 36516986238, 53395192396, 76561981236
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0....1....2....2...-2....0...-2....0...-2....2....1...-2...-1...-3....0...-2 ..2....0....0....1...-1....2...-1....1....0....1....3....1....2....0...-2....3 ..2...-3....1....0....0...-3....0....2....2....2....0....0....1....3....3....0 .-3....0...-3...-2...-1...-1....1...-3...-3....0....1....2...-2....0....2....1 ..0....1....0...-2....0....0....1...-1...-1...-3...-3....2...-1...-1...-1....2 ..3...-3...-1....3....1....1....0...-1....3...-1...-1....0....0....0...-1....0 .-2....2...-2....0....2....2....2....0....3...-3...-3...-1....3....1....0...-2 .-2....2....3...-2....1...-1...-1....2...-2....2....2...-2...-2....0...-1...-2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..197
Crossrefs
Cf. A199832.
Formula
Empirical: a(n) = (19328/315)*n^7 - (1424/45)*n^6 + (704/45)*n^5 - (112/9)*n^4 - (124/45)*n^3 + (229/45)*n^2 - (131/105)*n.
Conjectures from Colin Barker, May 16 2018: (Start)
G.f.: 2*x*(17 + 2927*x + 32914*x^2 + 73486*x^3 + 40405*x^4 + 4819*x^5 + 56*x^6) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
Comments