cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199854 Primes of the form 1 + m^2 + n^2 with gcd(m,n)=1.

Original entry on oeis.org

3, 11, 59, 83, 107, 131, 179, 227, 251, 347, 443, 467, 563, 587, 971, 1019, 1091, 1187, 1259, 1283, 1307, 1451, 1523, 1571, 1619, 1811, 1907, 1931, 2027, 2099, 2411, 2459, 2579, 2819, 2939, 2963, 3203, 3251, 3299, 3371, 3467, 3491, 3539, 3779, 3803, 3923, 3947
Offset: 1

Views

Author

Michel Marcus, Dec 22 2012

Keywords

Examples

			First such decompositions are 3 = 1 + 1^2 + 1^2, 11 = 1 + 1^2 + 3^2, 59 = 1 + 3^2 + 7^2.
First instance of several decompositions for the same prime: 131 = 1 + 3^2 + 11^2 = 1 + 7^2 + 9^2.
		

Crossrefs

Cf. A056899 (when the decomposition has m=1).

Programs

  • Maple
    filter:= proc(n) local S,x,y;
     if not isprime(n) then return false fi;
     S:= map(t -> subs(t,[x,y]),[isolve](x^2 + y^2 = n-1));
     ormap(t -> t[1] > 0 and t[2] >= t[1] and igcd(t[1],t[2])=1, S)
    end proc:
    select(filter, [seq(i,i=3..5000,2)]); # Robert Israel, Sep 30 2024
  • PARI
    hasform(p) = {q = p - 1; for (k = 1, q/2, if (issquare(k) && issquare(q-k) && (gcd(k, q-k)==1), return(1));); return(0);}