A199858 Decimal expansion of Sum_{n = 1 .. infinity }[ 1 / Sum {i = 1 .. m} d(i)^n] where d(i) are the divisors of n and m = tau(n) is the number of divisors of n.
1, 2, 3, 9, 7, 1, 9, 5, 3, 8, 1, 4, 6, 2, 2, 7, 4, 1, 1, 9, 6, 5, 0, 4, 2, 6, 7, 6, 5, 2, 4, 5, 8, 7, 1, 0, 4, 6, 7, 9, 0, 0, 0, 3, 6, 4, 6, 2, 3, 5, 4, 2, 7, 4, 1, 4, 2, 9, 5, 8, 6, 3, 0, 5, 7, 6, 9, 8, 9, 8, 3, 3, 8, 1, 7, 1, 7, 6, 5, 2, 1, 5, 0, 9, 6, 0, 2, 6, 2, 4, 8, 4, 8, 9, 7, 7, 1, 1, 4, 7, 6, 8, 7, 0, 3
Offset: 1
Examples
1.23971953814622741196504267652458710467...
Programs
-
Mathematica
RealDigits[N[Sum[1/DivisorSigma[n,n],{n,1,100}],130]][[1]]