A199860 Numbers k such that 6k-5 is a composite number of the form (6x-1) * (6y-1).
5, 10, 15, 20, 21, 25, 30, 32, 35, 40, 43, 45, 49, 50, 54, 55, 60, 65, 66, 70, 75, 76, 80, 83, 85, 87, 89, 90, 95, 98, 100, 105, 109, 110, 112, 115, 117, 120, 125, 130, 131, 134, 135, 140, 141, 142, 145, 150, 151, 153, 155, 158, 160, 164, 165, 168, 170, 175
Offset: 1
Examples
n=5 is in the sequence because 6*5-5 = 25 = 5*5 with x = y = 1. n=10 is in the sequence because 6*10-5 = 55 = 5*11 with x=1, y=2.
Crossrefs
Cf. A199859.
Programs
-
Maple
isA016969 := proc(n) (n mod 6)=5 ; end proc: isA016921 := proc(n) (n mod 6)=1 ; end proc: isA091300 := proc(n) (not isprime(n)) and isA016921(n) ; end proc: isA199860 := proc(n) if isA091300(6*n-5) then for d in numtheory[divisors](6*n-5) minus {1} do if isA016969(d) and isA016969((6*n-5)/d) then return true; end if; end do: return false; else return false; end if; end proc: for n from 5 to 210 do if isA199860(n) then printf("%d,",n) ; end if ; end do; # R. J. Mathar, Nov 27 2011
Comments