A199597 Decimal expansion of x > 0 satisfying x^2 + x*cos(x) = sin(x).
1, 1, 8, 8, 1, 8, 5, 1, 3, 4, 4, 5, 1, 4, 3, 8, 8, 0, 3, 2, 1, 7, 8, 1, 0, 9, 7, 2, 9, 0, 7, 6, 5, 2, 5, 9, 7, 3, 8, 3, 2, 4, 2, 5, 6, 1, 2, 8, 4, 1, 4, 7, 1, 9, 4, 1, 8, 2, 3, 9, 5, 2, 8, 3, 2, 3, 4, 1, 8, 6, 0, 9, 9, 1, 3, 4, 2, 2, 9, 6, 0, 3, 4, 2, 6, 1, 8, 0, 9, 6, 9, 1, 8, 3, 4, 8, 8, 4, 3, 0
Offset: 1
Examples
1.1881851344514388032178109729076525973...
Programs
-
Mathematica
(* Program 1: A199597 *) a = 1; b = 1; c = 2; f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.18, 1.19}, WorkingPrecision -> 110] RealDigits[r] (* A199597 *) (* Program 2: impl. surf. x^2+u*x*cos(x)=v*sin(x) *) f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v*Sin[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .5, 3}]}, {u, 0, 2}, {v, u, 20}]; ListPlot3D[Flatten[t, 1]] (* for A199597 *)
Extensions
Edited by Georg Fischer, Aug 03 2021
Comments