A199880 Engel expansion of x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted.
3, 4, 8, 12, 15, 33, 70, 4338, 22062, 46566, 98091, 255284, 2715877, 10855925, 150153128, 10009347774, 34679420772, 43644678207, 74587800101, 229110893125, 233558717156, 286861037311, 299617642336, 312870987050, 1632483095154, 31761226898013, 66327161231576
Offset: 1
Keywords
Examples
0.42801103796472992390204...
References
- F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.
Links
- F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Eric Weisstein's World of Mathematics, Engel Expansion
- Wikipedia, Engel Expansion
- Index entries for sequences related to Engel expansions
Programs
-
Maple
f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)): Digits:= 700: xv:= fsolve(f(x)=g(x), x=0..0.99): engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]): engel(xv, 39);
Comments