A199881 Triangle T(n,k), read by rows, given by (1,-1,0,0,0,0,0,0,0,0,0,...) DELTA (1,0,-1,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 3, 1, 0, 0, 1, 4, 4, 1, 0, 0, 0, 3, 7, 5, 1, 0, 0, 0, 1, 7, 11, 6, 1, 0, 0, 0, 0, 4, 14, 16, 7, 1, 0, 0, 0, 0, 1, 11, 25, 22, 8, 1, 0, 0, 0, 0, 0, 5, 25, 41, 29, 9, 1, 0, 0, 0, 0, 0, 1, 16, 50, 63, 37, 10, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 0, 1, 1; 0, 1, 2, 1; (key row for starting the recurrence) 0, 0, 2, 3, 1; 0, 0, 1, 4, 4, 1; 0, 0, 0, 3, 7, 5, 1; 0, 0, 0, 1, 7, 11, 6, 1; 0, 0, 0, 0, 4, 14, 16, 7, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<2, 1, If[k==0, 0, If[k==n, 1, If[n==2 && k==1, 1, T[n-1, k-1] +T[n-2, k-1] ]]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2021 *)
-
Sage
def T(n,k): return binomial(k, n-k) + binomial(k+1, n-k-1) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021
Formula
T(n,k) = T(n-1,k-1) + T(n-2,k-1) starting with T(0,0) = T(1,0) = T(1,1) = T(2,1) = T(2,2) = 1 and T(2,0) = 0.
G.f.: (1+x-y*x^2)/(1-y*x-y*x^2).
T(2n,n) = A028310(n).
From G. C. Greubel, Apr 28 2021: (Start)
T(n, k) = binomial(k, n-k) + binomial(k+1, n-k-1).
T(n, k) = (-1)^(n-k)*A104402(n, k). (End)
From G. C. Greubel, Apr 30 2021: (Start)
Sum_{k=0..n} T(n, k) = 2*Fibonacci(n) + [n=0].
Sum_{n=k..2*k+1} T(n,k) = 3*2^(n-1) + (1/2)*[n=0]. (End)
Comments