cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199881 Triangle T(n,k), read by rows, given by (1,-1,0,0,0,0,0,0,0,0,0,...) DELTA (1,0,-1,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 3, 1, 0, 0, 1, 4, 4, 1, 0, 0, 0, 3, 7, 5, 1, 0, 0, 0, 1, 7, 11, 6, 1, 0, 0, 0, 0, 4, 14, 16, 7, 1, 0, 0, 0, 0, 1, 11, 25, 22, 8, 1, 0, 0, 0, 0, 0, 5, 25, 41, 29, 9, 1, 0, 0, 0, 0, 0, 1, 16, 50, 63, 37, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2011

Keywords

Comments

The nonzero entries of column k give row k+1 in A072405.

Examples

			Triangle begins:
  1;
  1, 1;
  0, 1, 1;
  0, 1, 2, 1; (key row for starting the recurrence)
  0, 0, 2, 3, 1;
  0, 0, 1, 4, 4,  1;
  0, 0, 0, 3, 7,  5,  1;
  0, 0, 0, 1, 7, 11,  6, 1;
  0, 0, 0, 0, 4, 14, 16, 7, 1;
		

Crossrefs

Cf. A000931 (diagonal sums), A042950 (column sums), A055389 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<2, 1, If[k==0, 0, If[k==n, 1, If[n==2 && k==1, 1, T[n-1, k-1] +T[n-2, k-1] ]]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2021 *)
  • Sage
    def T(n,k): return binomial(k, n-k) + binomial(k+1, n-k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k-1) starting with T(0,0) = T(1,0) = T(1,1) = T(2,1) = T(2,2) = 1 and T(2,0) = 0.
G.f.: (1+x-y*x^2)/(1-y*x-y*x^2).
T(2n,n) = A028310(n).
From G. C. Greubel, Apr 28 2021: (Start)
T(n, k) = binomial(k, n-k) + binomial(k+1, n-k-1).
T(n, k) = (-1)^(n-k)*A104402(n, k). (End)
From G. C. Greubel, Apr 30 2021: (Start)
Sum_{k=0..n} T(n, k) = 2*Fibonacci(n) + [n=0].
Sum_{n=k..2*k+1} T(n,k) = 3*2^(n-1) + (1/2)*[n=0]. (End)