A199883 Number of distinct values taken by 6th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
1, 1, 2, 4, 9, 20, 48, 113, 262, 591, 1263, 2505, 4764, 8479, 14285, 22871, 35316, 52755, 76517, 107826, 148914, 202715, 270622
Offset: 1
Examples
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 6th derivative at x=1: (x^(x^(x^x))) -> 2934; ((x^x)^(x^x)), ((x^(x^x))^x) -> 4908; (x^((x^x)^x)) -> 5034; (((x^x)^x)^x) -> 8322.
Crossrefs
Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A199296 (5th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215836. Column k=6 of A216368.
Programs
-
Maple
f:= proc(n) option remember; `if`(n=1, {[0, 0, 0, 0, 0]}, {seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2], 8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3], 10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2] +15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4], 45*h[1]*g[1]^2+(120+60*h[2]+15*h[3]+60*g[2]+ 270*h[1])*g[1]+54+15*h[3]+30*g[3]+6*g[4]+ 60*h[1]*g[2]+15*h[1]*g[3]+30*h[1]+ 20*h[2]*g[2]+ 100*h[2]+90*h[1]^2+g[5]+60*g[2]+6*h[4]], h=f(n-j)), g=f(j)), j=1..n-1)}) end: a:= n-> nops(map(x-> x[5], f(n))): seq(a(n), n=1..15);
Extensions
a(22)-a(23) from Alois P. Heinz, Sep 26 2014