cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199885 Number of compositions of n such that the greatest part is not divisible by the number of parts.

Original entry on oeis.org

0, 1, 1, 6, 10, 23, 49, 106, 215, 444, 906, 1849, 3759, 7621, 15402, 31091, 62676, 126206, 253860, 510204, 1024665, 2056608, 4125625, 8272436, 16580967, 33223336, 66550937, 133278720, 266857006, 534220745, 1069297319, 2140037990, 4282507048, 8569103770
Offset: 1

Views

Author

Alois P. Heinz, Nov 11 2011

Keywords

Examples

			a(4) = 6: [1,1,1,1], [1,1,2], [1,2,1], [1,3], [2,1,1], [3,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, g) option remember; `if`(n=0, `if`(irem(g, t)=0, 0, 1), add(b(n-i, t+1, max(i, g)), i=1..n)) end: a:= n-> b(n, 0, 0): seq(a(n), n=1..40);
  • Mathematica
    b[n_, t_, g_] := b[n, t, g] = If[n == 0, If[Mod[g, t] == 0, 0, 1], Sum [b[n-i, t+1, Max[i, g]], {i, 1, n}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 05 2014, after Alois P. Heinz *)

Formula

G.f.: Sum_{n>0} (2^(n-1)*x^n-Sum_{d|n} ((x^(n+1)-x)^d-(x^n-x)^d)/(x-1)^d).
a(n) = A000079(n-1) - A171632(n).