A199922 Table read by rows, T(0,0) = 1 and for n>0, 0<=k<=3^(n-1) T(n,k) = gcd(k,3^(n-1)).
1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 81, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 81
Offset: 0
Examples
1 1, 1 3, 1, 1, 3 9, 1, 1, 3, 1, 1, 3, 1, 1, 9
Links
- G. C. Greubel, Rows n = 0..8 of the irregular triangle, flattened
Programs
-
Magma
[1] cat [Gcd(k, 3^(n-1)): k in [0..3^(n-1)], n in [1..6]]; // G. C. Greubel, Nov 24 2023
-
Maple
seq(print(seq(gcd(k,3^(n-1)), k=0..3^(n-1))),n=0..4);
-
Mathematica
T[n_, k_]:= If[n==0, 1, GCD[k, 3^(n-1)]]; Table[T[n, k], {n,0,6}, {k,0,3^(n-1)}]//Flatten (* G. C. Greubel, Nov 24 2023 *)
-
SageMath
def A199922(n,k): return gcd(k, 3^(n-1)) + (2/3)*int(n==0) flatten([[A199922(n,k) for k in range(int(3^(n-1))+1)] for n in range(7)]) # G. C. Greubel, Nov 24 2023
Formula
From G. C. Greubel, Nov 24 2023: (Start)
T(n, 3^(n-1) - k) = T(n, k).
Sum_{k=0..3^(n-1)} T(n, k) = A199923(n).
Sum_{k=0..3^(n-1)} (-1)^k * T(n, k) = A000007(n). (End)