cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199922 Table read by rows, T(0,0) = 1 and for n>0, 0<=k<=3^(n-1) T(n,k) = gcd(k,3^(n-1)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 81, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 81
Offset: 0

Views

Author

Peter Luschny, Nov 12 2011

Keywords

Examples

			             1
            1, 1
         3, 1, 1, 3
9, 1, 1, 3, 1, 1, 3, 1, 1, 9
		

Crossrefs

Programs

  • Magma
    [1] cat [Gcd(k, 3^(n-1)): k in [0..3^(n-1)], n in [1..6]]; // G. C. Greubel, Nov 24 2023
    
  • Maple
    seq(print(seq(gcd(k,3^(n-1)), k=0..3^(n-1))),n=0..4);
  • Mathematica
    T[n_, k_]:= If[n==0, 1, GCD[k, 3^(n-1)]];
    Table[T[n, k], {n,0,6}, {k,0,3^(n-1)}]//Flatten (* G. C. Greubel, Nov 24 2023 *)
  • SageMath
    def A199922(n,k): return gcd(k, 3^(n-1)) + (2/3)*int(n==0)
    flatten([[A199922(n,k) for k in range(int(3^(n-1))+1)] for n in range(7)]) # G. C. Greubel, Nov 24 2023

Formula

From G. C. Greubel, Nov 24 2023: (Start)
T(n, 3^(n-1) - k) = T(n, k).
Sum_{k=0..3^(n-1)} T(n, k) = A199923(n).
Sum_{k=0..3^(n-1)} (-1)^k * T(n, k) = A000007(n). (End)