A199930 Trisection 0 of A199803.
1, -2, -1, 12, -10, -49, 112, 111, -710, 316, 3233, -5634, -9505, 40592, -1934, -204897, 264664, 717295, -2243578, -873336, 12543857, -11138050, -50210993, 119318436, 108054622, -743719745, 372976064, 3334358847, -6051013534, -9504084892, 42720535345, -4585483266, -212470264817, 287622301384
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Michael D. Hirschhorn, Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See p. 324.
- Index entries for linear recurrences with constant coefficients, signature (-1,-5,1,-1).
Programs
-
Mathematica
LinearRecurrence[{-1,-5,1,-1},{1,-2,-1,12},40] (* Harvey P. Dale, May 20 2025 *)
-
PARI
Vec((1 - x + 2*x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ Colin Barker, Dec 27 2017
Formula
From Colin Barker, Dec 27 2017: (Start)
G.f.: (1 - x + 2*x^2) / (1 + x + 5*x^2 - x^3 + x^4).
a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3.
(End)
Comments