A199951 Decimal expansion of least x satisfying x^2 + cos(x) = 3*sin(x).
3, 6, 3, 5, 6, 0, 5, 3, 9, 8, 5, 8, 9, 5, 9, 2, 6, 6, 2, 5, 7, 3, 2, 1, 4, 8, 3, 7, 2, 2, 8, 4, 3, 9, 8, 5, 6, 6, 8, 9, 5, 7, 9, 0, 7, 4, 2, 5, 0, 8, 4, 0, 8, 0, 7, 4, 4, 2, 0, 4, 5, 7, 1, 8, 4, 0, 3, 1, 3, 4, 0, 6, 6, 8, 8, 6, 2, 2, 7, 6, 2, 6, 7, 4, 1, 8, 8, 9, 9, 6, 0, 8, 8, 5, 1, 2, 9, 2, 5
Offset: 0
Examples
least x: 0.36356053985895926625732148372284398566895... greatest x: 1.771792952982026337265923586449094216220...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = 1; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .36, .37}, WorkingPrecision -> 110] RealDigits[r] (* A199951 *) r = x /. FindRoot[f[x] == g[x], {x, 1.77, 1.78}, WorkingPrecision -> 110] RealDigits[r] (* A199952 *)
-
PARI
a=1; b=1; c=3; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
Comments