A199960 Decimal expansion of greatest x satisfying x^2+3*cos(x)=3*sin(x).
1, 9, 9, 0, 5, 0, 3, 4, 6, 1, 6, 6, 8, 4, 9, 3, 8, 3, 5, 5, 8, 1, 8, 7, 6, 0, 2, 2, 2, 0, 4, 4, 1, 2, 4, 7, 6, 3, 6, 9, 4, 5, 1, 1, 6, 7, 7, 1, 8, 2, 5, 3, 6, 2, 0, 8, 9, 8, 8, 7, 5, 4, 8, 8, 9, 7, 0, 7, 6, 6, 2, 2, 9, 2, 7, 5, 9, 1, 9, 6, 3, 0, 3, 2, 0, 2, 8, 2, 0, 8, 9, 2, 5, 5, 7, 4, 8, 1, 0
Offset: 1
Examples
least x: 1.046472542540093403618073553786437093400... greatest x: 1.9905034616684938355818760222044124763...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = 3; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110] RealDigits[r] (* A199959 *) r = x /. FindRoot[f[x] == g[x], {x, 1.99, 2.0}, WorkingPrecision -> 110] RealDigits[r] (* A199960 *)
-
PARI
a=1; b=3; c=3; solve(x=1.9, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
Comments