A199961 Decimal expansion of least x satisfying x^2 + 3*cos(x) = 4*sin(x).
7, 5, 8, 9, 6, 2, 2, 0, 3, 5, 1, 7, 6, 9, 6, 8, 5, 1, 8, 5, 7, 1, 9, 8, 2, 8, 6, 0, 5, 6, 1, 0, 5, 0, 9, 2, 5, 9, 4, 9, 0, 2, 6, 0, 7, 0, 3, 6, 4, 4, 6, 6, 1, 4, 5, 8, 2, 5, 7, 3, 8, 3, 9, 2, 8, 9, 8, 3, 0, 8, 4, 2, 6, 2, 3, 5, 4, 9, 1, 4, 6, 4, 9, 2, 4, 6, 1, 2, 2, 8, 2, 3, 9, 2, 9, 2, 2, 4, 6
Offset: 0
Examples
least x: 0.7589622035176968518571982860561050925949... greatest x: 2.23580928206456912111526414831701984424...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = 3; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .75, .76}, WorkingPrecision -> 110] RealDigits[r] (* A199961 *) r = x /. FindRoot[f[x] == g[x], {x, 2.2, 2.3}, WorkingPrecision -> 110] RealDigits[r] (* A199962 *)
-
PARI
a=1; b= 3; c=4; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018
Comments