A199966 Decimal expansion of greatest x satisfying x^2 + 4*cos(x) = 4*sin(x).
2, 3, 7, 8, 1, 2, 8, 1, 6, 8, 6, 7, 3, 7, 6, 7, 9, 8, 5, 9, 6, 8, 2, 0, 1, 6, 6, 1, 4, 7, 2, 8, 8, 6, 2, 1, 5, 3, 6, 6, 2, 9, 9, 9, 1, 5, 8, 9, 3, 5, 4, 1, 0, 0, 2, 2, 0, 8, 2, 0, 2, 7, 0, 8, 1, 3, 7, 4, 7, 2, 2, 3, 6, 2, 6, 6, 4, 9, 9, 0, 1, 2, 4, 6, 4, 8, 9, 3, 9, 4, 0, 0, 3, 4, 4, 9, 9, 2, 7
Offset: 1
Examples
least x: 0.943379571591794622084167020515639838... greatest x: 2.3781281686737679859682016614728862...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = 4; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .94, .95}, WorkingPrecision -> 110] RealDigits[r] (* A199965 *) r = x /. FindRoot[f[x] == g[x], {x, 2.37, 2.38}, WorkingPrecision -> 110] RealDigits[r] (* A199966 *)
-
PARI
a=1; b=4; c=4; solve(x=2, 3, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018
Comments