A200006 Decimal expansion of least x satisfying 3*x^2 + cos(x) = 4*sin(x).
3, 1, 9, 1, 6, 5, 5, 8, 4, 4, 9, 3, 9, 5, 6, 1, 1, 4, 5, 0, 9, 4, 4, 8, 2, 8, 0, 4, 6, 1, 2, 3, 8, 7, 8, 6, 4, 5, 0, 7, 4, 1, 1, 2, 3, 8, 1, 1, 0, 4, 6, 5, 8, 9, 6, 6, 4, 5, 3, 7, 3, 6, 2, 4, 0, 6, 0, 0, 9, 7, 9, 2, 3, 1, 2, 2, 5, 3, 6, 7, 3, 1, 2, 1, 1, 7, 2, 2, 3, 0, 9, 5, 8, 1, 8, 9, 0, 8, 2
Offset: 0
Examples
least x: 0.31916558449395611450944828046123878... greatest x: 0.9357819545602016906476903567483506551...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = 1; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .31, .32}, WorkingPrecision -> 110] RealDigits[r] (* A200006 *) r = x /. FindRoot[f[x] == g[x], {x, .93, .94}, WorkingPrecision -> 110] RealDigits[r] (* A200007 *)
-
PARI
a=3; b=1; c=4; solve(x=0, .5, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018
Comments