A200022 Decimal expansion of least x satisfying x^2 - 2*cos(x) = 3*sin(x) (negated).
5, 1, 4, 5, 1, 4, 8, 3, 0, 4, 7, 6, 4, 5, 8, 6, 8, 6, 5, 6, 5, 6, 3, 8, 9, 4, 5, 6, 7, 5, 3, 7, 1, 8, 1, 5, 9, 5, 2, 1, 1, 1, 9, 8, 3, 6, 7, 0, 3, 4, 0, 2, 2, 7, 8, 2, 0, 3, 9, 7, 8, 3, 7, 7, 5, 8, 1, 9, 3, 2, 4, 4, 5, 9, 9, 6, 6, 4, 1, 8, 7, 7, 8, 9, 1, 5, 6, 2, 9, 3, 8, 0, 2, 0, 5, 0, 3, 4, 2
Offset: 0
Examples
least x: -0.5145148304764586865656389456753718159521... greatest x: 1.669692169649763458252838305984917335937...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = -2; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.52, -.51}, WorkingPrecision -> 110] RealDigits[r] (* A200022 *) r = x /. FindRoot[f[x] == g[x], {x, 1.66, 1.67}, WorkingPrecision -> 110] RealDigits[r] (* A200023 *)
-
PARI
a=1; b=-2; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
Comments