A200026 Decimal expansion of least x satisfying x^2 - 3*cos(x) = sin(x) (negated).
9, 5, 5, 9, 0, 8, 7, 9, 8, 4, 8, 1, 6, 1, 3, 4, 1, 3, 5, 3, 7, 3, 0, 1, 4, 3, 9, 5, 8, 4, 4, 0, 6, 1, 0, 3, 5, 9, 4, 8, 9, 8, 6, 6, 8, 6, 7, 5, 3, 9, 4, 3, 2, 8, 6, 5, 9, 3, 6, 8, 9, 4, 2, 2, 4, 3, 3, 7, 9, 9, 4, 8, 6, 9, 8, 5, 4, 7, 3, 9, 0, 1, 1, 1, 9, 1, 2, 8, 8, 5, 8, 4, 3, 9, 8, 0, 0, 6, 3
Offset: 0
Examples
least x: -0.9559087984816134135373014395844... greatest x: 1.31448560919776196551921986761091...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = -3; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.96, -.95}, WorkingPrecision -> 110] RealDigits[r] (* A200026 *) r = x /. FindRoot[f[x] == g[x], {x, 1.31, 1.34}, WorkingPrecision -> 110] RealDigits[r] (* A200027 *)
-
PARI
a=1; b=-3; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
Comments