A200046 Numbers n such that the equation x^n + (x+1)^n = (x+2)^n (mod n), x = 0..n-1 has no solution.
15, 25, 33, 35, 39, 55, 57, 69, 75, 95, 99, 115, 117, 119, 121, 123, 125, 129, 135, 143, 145, 153, 155, 169, 175, 195, 203, 205, 209, 215, 217, 221, 225, 235, 247, 253, 255, 259, 273, 275, 285, 289, 295, 299, 305, 309, 315, 319, 321, 323, 325, 333, 335, 339
Offset: 1
Keywords
Programs
-
Maple
for n from 1 to 340 do:ii:=0:for x from 0 to n-1 do:if x^n+(x+1)^n -(x+2)^n mod n =0 then ii:=ii+1:else fi:od: if ii=0 then printf(`%d, `,n):else fi:od:
Comments