cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200067 Maximum sum of all products of absolute differences and distances between element pairs among the integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 12, 20, 30, 45, 63, 84, 112, 144, 180, 225, 275, 330, 396, 468, 546, 637, 735, 840, 960, 1088, 1224, 1377, 1539, 1710, 1900, 2100, 2310, 2541, 2783, 3036, 3312, 3600, 3900, 4225, 4563, 4914, 5292, 5684, 6090, 6525, 6975, 7440, 7936, 8448
Offset: 0

Views

Author

Alois P. Heinz, Nov 13 2011

Keywords

Comments

Also the maximum sum of weighted inversions among the compositions of n where weights are products of absolute differences and distances between the element pairs which are not in sorted order.
a(n) is divisible by at least one triangular number >1 for n>=4. Thus 3 is the only prime in this sequence.

Examples

			a(2) =  0: [1,1]-> 0, [2]-> 0; the maximum is 0.
a(3) =  1: [1,1,1]-> 0, [2,1]-> 1, [3]-> 0; the maximum is 1.
a(4) =  3: [1,1,1,1]-> 0, [2,1,1]-> 1+2 = 3, [2,2]->0, [3,1]->2, [4]->0.
a(5) =  6: [2,1,1,1]-> 1+2+3 = 6, [3,1,1]-> 2 + 2*2 = 2*(1+2) = 6.
a(6) = 12: [3,1,1,1]-> 2 + 2*2 + 2*3 = 2*(1+2+3) = 12.
a(7) = 20: [3,1,1,1,1]-> 2 + 2*2 + 2*3 + 2*4 = 2*(1+2+3+4) = 20.
a(8) = 30: [3,1,1,1,1,1]-> 2*(1+2+3+4+5) = 30, [4,1,1,1,1]-> 3*(1+2+3+4) = 30.
		

Crossrefs

Programs

  • Maple
    a:= n-> (k-> (n-k-1)*k*(k+1)/2)(max(0, floor((2*n-1)/3))):
    seq(a(n), n=0..50);
  • Mathematica
    a[n_] := Max[Table[(n-k-1)*k*(k+1)/2, {k, 0, n}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 22 2013, after Alois P. Heinz *)

Formula

G.f.: x^3*(1+x)*(1+x^2)/((1+x+x^2)^2*(x-1)^4).
a(n) = max_{k=0..n} (n-k-1)*k*(k+1)/2.
a(n) = (n-k-1)*k*(k+1)/2 with k = max(0, floor((2*n-1)/3)), or k = A004396(n-1) for n>0.
27*a(n) = (2*n-1)*(n^2-n-1) - A132677(n) - 3*(-1)^n*A099254(n-1). - R. J. Mathar, Mar 14 2025