A200067 Maximum sum of all products of absolute differences and distances between element pairs among the integer partitions of n.
0, 0, 0, 1, 3, 6, 12, 20, 30, 45, 63, 84, 112, 144, 180, 225, 275, 330, 396, 468, 546, 637, 735, 840, 960, 1088, 1224, 1377, 1539, 1710, 1900, 2100, 2310, 2541, 2783, 3036, 3312, 3600, 3900, 4225, 4563, 4914, 5292, 5684, 6090, 6525, 6975, 7440, 7936, 8448
Offset: 0
Examples
a(2) = 0: [1,1]-> 0, [2]-> 0; the maximum is 0. a(3) = 1: [1,1,1]-> 0, [2,1]-> 1, [3]-> 0; the maximum is 1. a(4) = 3: [1,1,1,1]-> 0, [2,1,1]-> 1+2 = 3, [2,2]->0, [3,1]->2, [4]->0. a(5) = 6: [2,1,1,1]-> 1+2+3 = 6, [3,1,1]-> 2 + 2*2 = 2*(1+2) = 6. a(6) = 12: [3,1,1,1]-> 2 + 2*2 + 2*3 = 2*(1+2+3) = 12. a(7) = 20: [3,1,1,1,1]-> 2 + 2*2 + 2*3 + 2*4 = 2*(1+2+3+4) = 20. a(8) = 30: [3,1,1,1,1,1]-> 2*(1+2+3+4+5) = 30, [4,1,1,1,1]-> 3*(1+2+3+4) = 30.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
Programs
-
Maple
a:= n-> (k-> (n-k-1)*k*(k+1)/2)(max(0, floor((2*n-1)/3))): seq(a(n), n=0..50);
-
Mathematica
a[n_] := Max[Table[(n-k-1)*k*(k+1)/2, {k, 0, n}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 22 2013, after Alois P. Heinz *)
Formula
G.f.: x^3*(1+x)*(1+x^2)/((1+x+x^2)^2*(x-1)^4).
a(n) = max_{k=0..n} (n-k-1)*k*(k+1)/2.
a(n) = (n-k-1)*k*(k+1)/2 with k = max(0, floor((2*n-1)/3)), or k = A004396(n-1) for n>0.
Comments