A200073 Coefficients of a generalized Jaco-Lucas polynomial (odd indices) read by rows.
1, 4, 3, 11, 15, 5, 29, 56, 35, 7, 76, 189, 171, 66, 9, 199, 605, 715, 407, 110, 11, 521, 1872, 2730, 2054, 832, 169, 13, 1364, 5655, 9810, 9180, 4965, 1533, 245, 15, 3571, 16779, 33745, 37774, 25585, 10642, 2618, 340, 17, 9349, 49096, 112309, 146357, 119168, 62453, 20862, 4218, 456, 19
Offset: 0
Examples
Triangle begins: 1, 4, 3, 11, 15, 5, 29, 56, 35, 7, 76, 189, 171, 66, 9, ...
Links
- Y. Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, (2005) 359-370, Table 3.4.
Programs
-
Maple
A200073 := proc(n,k) (2*n+1)*add( binomial(2*n+1-j,j)*binomial(j,k)/(2*n+1-j),j=0..n) ; end proc: seq(seq(A200073(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Nov 13 2011
-
Mathematica
T[n_, k_] := Sum[(2n+1) Binomial[2n+1-j, j] Binomial[j, k]/(2n+1-j), {j, 0, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 02 2020 *)
Formula
T(n,k) = Sum_{j=0..n} (2n+1)*binomial(2n+1-j,j)*binomial(j,k)/(2n+1-j).
Comments