cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200092 The number of ways of putting n labeled items into k labeled boxes so that each box receives at least 3 objects.

Original entry on oeis.org

1, 1, 1, 1, 20, 1, 70, 1, 182, 1, 420, 1680, 1, 912, 12600, 1, 1914, 62370, 1, 3938, 256410, 369600, 1, 8008, 949806, 4804800, 1, 16172, 3297294, 38678640, 1, 32526, 10966956, 248047800, 168168000
Offset: 3

Views

Author

Peter Bala, Dec 04 2011

Keywords

Comments

Equivalently, the number of ordered set partitions of the set [n] into k blocks of size at least three. When the boxes are unlabeled we obtain A059022.

Examples

			Table begins
  n\k |  1     2       3
  ----+-----------------
   3  |  1
   4  |  1
   5  |  1
   6  |  1    20
   7  |  1    70
   8  |  1   182
   9  |  1   420    1680
  10  |  1   912   12600
  11  |  1  1914   62370
  ...
T(6,2) = 20: The arrangements of 6 objects into 2 boxes { } and [ ] so that each box contains at least 3 items are {1,2,3}[4,5,6], {1,2,4}[3,5,6], {1,2,5}[3,4,6], {1,2,6}[3,4,5], {1,3,4}[2,5,6], {1,3,5}[2,4,6], {1,3,6}[2,4,5], {1,4,5}[2,3,6], {1,4,6}[2,3,5], {1,5,6}[2,3,4] and the 10 other possibilities where the contents of a pair of boxes are swapped.
		

Crossrefs

Formula

E.g.f. with additional constant 1: 1/(1 - t*(exp(x) - 1 - x - x^2/2!)) = 1 + t*x^3/3! + t*x^4/4! + t*x^5/5! + (t+20*t^2)*x^6/6! + ....
Recurrence relation: T(n+1,k) = k*(T(n,k) + n*(n-1)/2*T(n-2,k-1)). T(n,k) = k!*A059022(n,k).