A200094 Decimal expansion of greatest x satisfying x^2 - 3*cos(x) = 2*sin(x).
1, 4, 9, 2, 6, 6, 5, 9, 2, 3, 5, 2, 5, 1, 3, 2, 2, 0, 6, 9, 6, 9, 2, 4, 3, 0, 5, 9, 8, 3, 4, 9, 3, 6, 8, 6, 1, 2, 4, 0, 4, 8, 8, 9, 5, 6, 1, 6, 3, 5, 6, 4, 3, 2, 6, 8, 3, 4, 4, 8, 4, 7, 9, 6, 0, 6, 9, 1, 2, 4, 2, 5, 9, 1, 7, 2, 9, 7, 0, 3, 5, 3, 3, 6, 8, 4, 1, 3, 1, 4, 1, 0, 3, 0, 8, 7, 9, 1, 2
Offset: 1
Examples
least x: -0.8029921542978842507203354534748712742... greatest x: 1.492665923525132206969243059834936861...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = -3; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.81, -.80}, WorkingPrecision -> 110] RealDigits[r] (* A200093 *) r = x /. FindRoot[f[x] == g[x], {x, 1.49, 1.50}, WorkingPrecision -> 110] RealDigits[r] (* A200094 *)
-
PARI
a=1; b=-3; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
Comments