A200095 Decimal expansion of least x satisfying x^2 - 3*cos(x) = 3*sin(x), negated.
6, 7, 7, 1, 1, 9, 4, 1, 1, 6, 9, 7, 9, 4, 3, 1, 3, 0, 1, 8, 4, 1, 7, 9, 5, 2, 0, 0, 9, 8, 9, 1, 7, 0, 2, 1, 5, 5, 6, 6, 4, 5, 5, 5, 2, 5, 3, 3, 6, 9, 3, 2, 4, 4, 3, 7, 6, 9, 1, 1, 5, 4, 0, 1, 8, 3, 5, 0, 3, 8, 3, 8, 7, 6, 2, 7, 8, 4, 0, 3, 8, 9, 9, 8, 9, 8, 2, 7, 3, 9, 2, 3, 4, 8, 4, 8, 2, 9, 5
Offset: 0
Examples
least x: -0.677119411697943130184179520098917021... greatest x: 1.6546997822939010711316866818308006354...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = -3; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.88, -.67}, WorkingPrecision -> 110] RealDigits[r] (* A200095 *) r = x /. FindRoot[f[x] == g[x], {x, 1.65, 1.66}, WorkingPrecision -> 110] RealDigits[r] (* A200096 *)
-
PARI
a=1; b=-3; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
Comments