A200100 Decimal expansion of greatest x satisfying x^2 - 4*cos(x) = sin(x).
1, 3, 5, 4, 5, 7, 5, 5, 5, 8, 2, 1, 5, 8, 5, 7, 8, 4, 4, 9, 0, 8, 9, 0, 7, 7, 0, 1, 6, 4, 6, 4, 6, 3, 7, 1, 8, 8, 1, 7, 4, 5, 1, 3, 4, 2, 1, 0, 6, 2, 6, 4, 5, 6, 2, 3, 4, 1, 1, 1, 6, 9, 6, 7, 0, 1, 4, 2, 1, 3, 1, 9, 1, 6, 3, 0, 2, 2, 8, 8, 3, 3, 1, 9, 0, 4, 0, 2, 9, 8, 1, 8, 3, 5, 3, 7, 7, 0, 2
Offset: 1
Examples
least x: -1.053352983600153733281110157999... greatest x: 1.35457555821585784490890770164646...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = -4; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.06, -1.05}, WorkingPrecision -> 110] RealDigits[r] (* A200099 *) r = x /. FindRoot[f[x] == g[x], {x, 1.35, 1.36}, WorkingPrecision -> 110] RealDigits[r] (* A200100 *)
-
PARI
a=1; b=-4; c=1; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
Comments