A200107 Decimal expansion of least x satisfying 2*x^2 - cos(x) = sin(x), negated.
4, 6, 9, 0, 3, 2, 3, 7, 1, 1, 1, 9, 8, 0, 9, 3, 0, 5, 7, 3, 3, 5, 4, 9, 3, 0, 5, 8, 0, 2, 5, 1, 0, 5, 0, 0, 5, 5, 0, 0, 5, 6, 3, 6, 9, 5, 9, 3, 8, 3, 0, 6, 6, 8, 7, 3, 2, 8, 8, 7, 0, 4, 1, 8, 4, 8, 2, 6, 3, 8, 4, 1, 7, 4, 6, 1, 1, 2, 1, 2, 9, 0, 7, 6, 5, 5, 5, 2, 5, 1, 2, 6, 4, 8, 8, 2, 9, 4, 6
Offset: 0
Examples
least x: -0.4690323711198093057335493058025105005500... greatest x: 0.84026351771576789934797349964835579736...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = -1; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.47, -.46}, WorkingPrecision -> 110] RealDigits[r] (* A200107 *) r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110] RealDigits[r] (* A200108 *)
-
PARI
a=2; b=-1; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018
Comments